Spectral conditions for admissibility and observability of Schrödinger systems: Applications to finite element discretizations

نویسنده

  • Sylvain Ervedoza
چکیده

In this article, we derive uniform admissibility and observability properties for the finite element space semi-discretizations of iż = A0z, where A0 is an unbounded self-adjoint positive definite operator with compact resolvent. In order to address this problem, we present several spectral criteria for admissibility and observability of such systems, which will be used to derive several results for space semi-discretizations of iż = A0z. Our approach provides very general results, which stand in any dimension and for any regular mesh (in the sense of finite elements). We also present applications to admissibility and observability for fully discrete approximation schemes, and to controllability and stabilization issues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolvent Conditions for the Control of Unitary Groups and Their Approximations

A self-adjoint operator A and an operator C bounded from the domain D(A) with the graph norm to another Hilbert space are considered. The admissibility or the exact observability in finite time of the unitary group generated by iA with respect to the observation operator C are characterized by some spectral inequalities on A and C. E.g. both properties hold if and only if x 7→ ‖(A−λ)x‖+‖Cx‖ is ...

متن کامل

hp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates

There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

Spectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory

In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2011